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Abstract— In this paper, we try to consider interaction design
for adaptation from the viewpoint of transfer of knowledge. Re-
cent advancements in robotics are amazing, and their interaction
processes with outside world (including human) are getting to
be longer in time scale. We will investigate these matters in
an abstract agent that faces multiple learning tasks within its
lifetime, transferring past learning experiences to improve its
performance. We formulize the multitask reinforcement learning
problem at first, and then we present two ways of incorporating
past learning experiences into the agent’s learning algorithm.

I. INTRODUCTION

We live in the era that autonomous robots will soon be
with our daily lives. These robots interact with their outside
world based on wide range of technologies aimed for highly
embedded systems. As one direction among them, we focus
on a lifelong property in the autonomous robots. In other
words, we consider the agent that deals with multiple learning
tasks within its lifetime exploiting past learning experiences
to improve its performance. To begin with, let us present one
fundamental example here:

Imagine there is a cleaning robot working at a hotel. Its job
is to clean up a room every day after the customer checks out.
(For simplicity, here we consider that only one room is done in
a day by one robot) The structures of all rooms are basically
the same, but sometimes there are cases where customers move
desks or chairs by their own, and then the environment for the
robot isn’t totally static. Under these settings, the robot has
to work every day through years, finishing the job as fast as
possible for preparing another customer’s check-in.

Now, if we view that each day’s job is one task for the
robot to learn how to clean up the hotel’s room, then there
given multiple tasks through years. And it is essential for
the robot to keep its past learning experiences and utilize
them in the future learning tasks to solve them faster. Our
motivation of this study rises here, and we address one
way of developing software technologies about reinforcement
learning for robots that have long-term lifetime like human
beings. Reinforcement learning[7] is a vigorously studied area
in machine learning researches. It is a general framework
of learning through trial and error and it can model wide
range of interaction processes. In contrast to the conventional
techniques dealing with single task learning, we consider
Multitask Reinforcement Learning towards the global end
mentioned above. Generally, in reinforcement learning, there
need a great number of learning trials, and then if we consider
applying it in the multitask domain, exploiting past learning

experiences becomes crucial as it would have the possibility
to reduce the number dramatically.

Based on foundations explained in Section II, discussions
begin with how to formulize the learning problem formally
(Section III), which has been difficult in these areas. The
central idea here is to consider the distribution of tasks,
each of which is defined as a Markov Decision Process.
We can set environmental features that are common to all
tasks by using value statistics introduced here. Multiple tasks
are sampled from the distribution and presented to the agent
one by one through its lifetime. The agent’s objective is to
maximize the total reward through the lifetime as well as
the conventional return in each task. To do this, it has to
be endowed an important ability to improve its reinforcement
learning performance by using past learning experiences that
were obtained as value statistics.

How to exploit the value statistics facing a new task is
another topic of this paper. We propose two methods that are
independent but helped each other: One is to exploit them in
Prioritized Sweeping (Section IV), a general standard of de-
termining the order of simulated learning. By using deviation
information about each value, reliability difference in initial
values of learning is considered, leading to more accurate cal-
culation of the order (priority in simulated learning). The other
is to exploit them in Directed Exploration (Section V), which
guides the agent’s action selection strategy as biased ways.
This method offers the agent not only effective exploration,
building the model, but also further reliable calculation of the
priority explained above. All these methods are tested and
evaluated in computer simulation experiments showing their
effectiveness.

II. FOUNDATIONS [7]

A. Reinforcement Learning in MDP

There is a learning agent that interacts with its outside
(environment) at some discrete time scale. At each time step,
the agent selects an action at ∈ A based on its observation of
the environment’s state st ∈ S. In response to the at, the
environment returns a numerical reward rt+1 and the next
state st+1 to the agent as a consequence of a state-transition.
Basically, the environmental dynamics is modeled through a
finite Markov Decision Process (MDP). A particular finite
MDP is defined by four sets < S, A, P , R >, where P is a
set of transition probabilities P a

ss′ = Pr {st+1 = s′ | s, a}, and
R is a set of reward functions Ra

ss′ = E {rt+1 | s, a, s′}. The
agent’s objective is to find optimal policy π(s, a), which is a



mapping from states to probabilities of taking each possible
action. It is updated through learning to maximize the expected
discounted future reward from each state s:

vπ(s)=E
{

rt + γrt+1 + γ2rt+2 · · ·
∣∣ st = s, π

}
(1)

where γ is a discount rate. This vπ(s) specifies the value of
a state s under policy π, and vπ is called the value function
for policy π. Based on this,

v∗(s) = max
π

vπ(s) (2)

can be defined, and v∗ is called the optimal value function. By
using this, delayed rewards can be dealt with, and this is one
feature of RL. These value functions can be estimated through
trial and error. That is, the agent can learn them directly from
raw experience without a model of the environmental dynam-
ics. Various approaches were proposed to estimate them, and
we will later use Q-learning[12] among them. In Q-learning,
the action-value q(s, a) is used instead of v(s). This method is
known to be able to estimate the optimal value function under
some assumptions, and is widely used in the literature of RL
fields.

B. Reinforcement Learning with Models

Usually, in reinforcement learning, there need a large num-
ber of learning trials to estimate the optimal value function.
One general way to reduce this cost is introducing a model,
which is often called as model-based reinforcement learning
[8]. In addition to the normal learning process that is done by
real experiences, a model of the environment and simulated
experiences (planning process) in it are used to estimate the
values, and then its learning speed is accelerated.

Basically, simulated experiences are obtained by random
backups (updating values). But it is well known that the order
of backups is crucial for the better performance in model-based
reinforcement learning. Prioritized Sweeping [4], [6] decides
the order by using a priority metric p below:

p =
∣∣ qT − qC

∣∣ (3)

where qC = q(s, a) and qT is various by the difference of
algorithms. For example, when we use Q-learning, qT =
r + γ maxa′ q(s′, a′), or when we use SARSA[7], qT =
r + γq(s′, a′). In Prioritized Sweeping, backups having larger
p are prioritized in its order.

III. THE MTRL PROBLEM

A. A Task and the Distribution of Tasks

From now on, we define a task by MDP and its running
time τ , that is, by specifying five sets < S, A, P , R, τ >.
As we reviewed in Section II-A, a set of the optimal values
v∗(s) can be determined if we specify the MDP. Therefore,
we can say now that every task has its own optimal value set
{v∗(s)} respectively. Then, we consider the distribution of the
tasks. In other words, we define a class over multiple MDPs
from which we can sample tasks independently. To describe
the property of the class, we use a set of V ∗(s) that denotes

the distribution of v∗(s). Specifying V ∗(s) can be viewed as
setting a relationship between multiple tasks. We can represent
environmental features by using it, and we name the class
as MDPs with Biased-Values (BV-MDPs). In this paper, we
presuppose that each V ∗(s) is independent for different s.

B. The Total Reward through a Lifetime

As we mentioned in Section II-A, the objective of the agent
in reinforcement learning is to maximize the expected return
in each state. In addition to this, we consider here the total
reward through the agent’s lifetime. Formally, it is described
as follows:

TR =
N∑

i=1

∫ ti−1+τi

ti−1

rt dt

⎛
⎝ti =

i∑
j=1

τj , t0 = 0

⎞
⎠ (4)

where N is the total number of tasks, and τi is the running
time of task i. We call this TR as the total reward through a
lifetime.

To solve the equation (4) directly is pretty hard and cur-
rently impossible. Then, instead of it, we aim for maximizing
the sub-total reward below in every task by exploiting past
learning experiences obtained by then. This is valid because
all tasks are sampled independently in our problem setting.

STR =
∫ ti−1+τi

ti−1

rt dt

⎛
⎝ti =

i∑
j=1

τj , t0 = 0

⎞
⎠ (5)

C. Maintaining Value Statistics

In reinforcement learning, the most general data as learning
results are estimated values. As we explained in Section III-
A, there are relationships between tasks sampled from BV-
MDPs in their optimal values. In this section, we consider
extracting the relationships from value statistics. We view
them as learning experiences, and let the agent maintain them
through tasks. Value statistics are, as it were, the past learning
experiences that are compressed. In our problem domain,
it is inappropriate to store values of all tasks because the
number of them is large and the memory costs grow up
enormously. Therefore, such a method as a modular-approach
about value functions is not suitable. We need here more
compact representation, and hire statistics. After finishing each
task, the agent can easily update the mean and deviation about
its action values (for all s, a):

Q(s, a) =
1
n

n∑
i=1

q(s, a)i (6)

sQ(s,a) =

√√√√ 1
n − 1

n∑
i=1

(
q(s, a)i − Q(s, a)

)2
(7)

where i indicates a task index, and n is the number of tasks that
were previously solved. These quantities represent features in
the environment that are common to all of the tasks. They can
also be viewed as that if Q(s, a) is used as an initial value in
a new task, then its reliability is given by sQ(s,a).



lifetime

BV-MDPs

past tasks current task
(one is choosen)

Fig. 1. The MTRL agent

D. Formalizing the Problem

Based on arguments so far, in this section we formulize
the MTRL problem. We consider an agent that faces multiple
learning tasks one by one through its lifetime, utilizing past
experiences for improving its current and future learning
performance (Figure 1). The agent’s objective is to maximize
its total reward TR, in addition to the conventional return in
each task. A task is defined as an independent sample from
BV-MDPs, and each is presented to the agent in every τi time
until the end of its lifetime.

IV. PRIORITIZED SWEEPING WITH VALUE STATISTICS

The ability to transfer past learning experiences and utilize
them for improving future learning performance is at the core
of the MTRL agent. In the following two sections, we will
discuss how they are realized by using value statistics intro-
duced in Section III-C. First, in this section we will consider
incorporating them into Prioritized Sweeping, a fundamental
procedure in model-based reinforcement learning.

A. Exploiting Value Statistics in
Model-Based Reinforcement Learning

To maximize (5), the agent has to estimate the optimal value
function as fast as possible in each task. In the situation where
the learning speed is crucial, usually a model-based approach
explained in Section II-B is used in reinforcement learning.
Now we explain how previously obtained value statistics are
combined with the model-based reinforcement learning.

1) Exploiting Q: Usually in reinforcement learning, initial
values (values at the beginning of learning process) are set
randomly or zero, and there isn’t specific standard that is
considered to be the best though they affect the learning-speed
very much. (A few exceptions are in optimistic initial values
[9], [7] and an analysis [3])

In the MTRL problem, however, we can employ Q(s, a)
obtained by then as initial values. The more static the envi-
ronmental dynamics is, the more effective it would be.

q0(s, a) = Q(s, a), for all s, a (8)

2) Exploiting sQ: To make model-based reinforcement
learning effective, there are two precepts in its ways of simu-
lated backups. As the number of them is fixed at X times per
one (real) action, it is important to let one simulated backup as
large as and as precise as possible. Prioritized Sweeping (PS)

explained in Section II-B was designed to realize the former
aim that is about the size of each backup. Now, we consider
the latter one that is about accuracy of each backup. As we
mentioned in Section III-C, each Q(s, a) has its own reliability
represented by sQ(s,a). We make use of this feature. Most
reinforcement learning methods like Q-learning are what we
call bootstrapping one: each value is estimated by using other
values that themselves are also estimates. Therefore, in the
middle of learning phase, the values are not always accurate,
that is, there often happen cases where they are far from
the optimal values. Now, it is expected that we can use the
deviation sQ to decrease the number of wrong backups caused
by the inaccurate values. This idea is realized by introducing
a new priority metric designed for the MTRL problem:

pE = E
[ (

QT − QC
)2

]

�
(

QT − QC
)2

+
(
sQT

)2 +
(
sQC

)2
(9)

The squared procedure is valid as the priority metric is origi-
nally positive (cf. (3)) and only the relative size is concerned.
By using this pE , the deviation information about each q(s, a)
is properly exploited, and more precise value estimation can
be realized.

Value statistics are updated at the end of each task’s learning
phase. In contrast to the mean information Q that is used only
when each task starts, the deviation sQ has been hired through
the task all the way. Value statistics are universal information
in that they are obtained through past tasks. Then, if one wants
to focus on the performance of convergence within a task,
the information should be shifted gradually toward more local
type. To do this, we prepare another deviation s′Q(s, a) that
represents the fluctuation of q(s, a) within a task updated in
every step of learning. s′Q(s, a) is set to 0.0 at the beginning
of each task for all s, a. Then, the weighted sum of sQ(s, a)
and s′Q(s, a) is used changing the weights. By using this, the
deviation is shifted gradually toward the local type. Currently,
a slope parameter β that indicates a point where the weight
(rate) becomes 0.0 is determined by trial and error in computer
simulation. Detailed description here can be found in [11].

B. Experiments

1) Objective: In this section we set several examples of
the MTRL problem explained previously by using computer
simulation. We conduct experiments there and evaluate the
effectiveness of our approach. For the clear understanding
about the results, there are some remarks:

• We let the agent’s lifetime enough long for acquiring
accurate statistics. Then, by using new tasks, we compare
results by our method that exploits value statistics and
those by simple PS. This is based on the argument in
Section III-B.

• The purpose of the agent in reinforcement learning is
to maximize some criterions about reward. When we
evaluate its performance, such a standard like an average
reward is sometimes inappropriate as it is affected by
the differences of the agent’s policy (action selection).



Then, we evaluate methods by measuring accuracy of
value estimation. We calculate the mean-squared error
(MSE) between estimated values and the optimal values
to judge the accuracy. As we explained in Section II-A,
the value of a state is a metric that generalizes acquiring
rewards, and estimating it faster leads to getting more
rewards in τ period.

2) Plan: Experiments are conducted on the square random
gridworld (SRG) illustrated in Figure 2. The gridworld is a
straight framing of MDP and it has been commonly used
especially in model-based reinforcement learning. Each cell
of the grid corresponds a state, and four actions are possible
there: north, south, east, and west, which stochastically cause
the agent to move one cell in the corresponding direction on
the grid. The transition probabilities are determined when a
task is given to the agent, which will be explained in detail
later. The agent cannot move toward outside. After reaching
the goal state (G), the agent gets a goal reward and returns to
the start state (S) to begin a new episode. This problem can be
represented by MDP, and there the agent aims for estimating
the optimal values through trial and error.

Consider a situation where multiple tasks (MDPs) are
given to the agent one by one. When a new task (MDP) is
given, each transition probability is sampled from a normal
distribution. Here, we form BV-MDPs by < S, A, DP , R >
where DP indicates the set of the distribution. Each sampled
probability P a

ss′ (s �= s′) represents the probability of success
in corresponding state-transition. In other case, the state is
unchanged. That is, P a

ss = 1.0 − P a
ss′ .

In each experiment under common BV-MDPs, at first 100
tasks are sampled to calculate value statistics. Then, 10 new
are sampled as well to investigate the effects of proposed
methods. Results are evaluated by the averaged mean-squared
error (averaged MSE) between q(s, a) and q∗(s, a) for all
s, a over the 10 tasks. Regarding the agent’s action selection
(exploration strategy), we use ε-greedy selection where a
random action is selected with probability ε, and in other cases
an action whose value is the highest is selected [7]. Basically,
we compare three kinds of methods in all experiments: simple
Prioritized Sweeping (PS), PS with Q as initial values, and PS
with both value statistics (Q and sQ). The learning rate is set
to 0.01, ε is 0.5 and the discount rate to 0.95. Under these
settings, we conduct two kinds of experiments below:
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Fig. 2. The square random gridworld
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Fig. 3. Learning curves for PS and PSb obtained by experiments conducted
in SRGs whose size is 10 × 10. The performance measure shown is MSE
between the value function learned and the true value function that is averaged
over 10 tasks. The vertical axis is log scale.
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Fig. 4. Learning curves for PSb and PSVS obtained by experiments
conducted in SRGs whose size is 10× 10. Three lines are plotted in case of
PSVS by the differences of β.

[Experiment-A:] We compare results by using SRG whose
size is 10 × 10. 110 tasks are sampled and three methods
above are evaluated under them. State-transitions are totally
stochastic, and all P a

ss′ (s �= s′) are sampled from the normal
distribution whose mean is 0.5 and variance 0.02.

[Experiment-B:] This time, the SRG size is fixed to 10×10.
9 environments are prepared by the difference of the number
of states whose transitions are stochastic (non-deterministic):
10, 20, . . . 90. Regarding the states, transition probabilities
are sampled from the normal distribution that is the same as
Experiment-A.

3) Results: Experiment-A: Figure 3 shows a comparison
result between the simple prioritized sweeping (PS) and it
exploiting Q in its initial values (PSb: See Section IV-A.1). It
describes the effects of introducing Q as initial biases. It focus
on the beginning stage of learning phase as a typical character
introducing them can be seen here: at first the performance of
PSb gets wrong temporary, and then it improves all the way. If
the experiment continues longer, then the result of PSb will be
better than the start point. There is an offset between two lines
plotted and it means the performance gain of introducing Q.
The tendency is common to all experiments conducted here.

Next, Figure 4 shows another comparison result between
PSb and PS exploiting both Q and sQ (PSVS). In case of
the latter, three lines are plotted by the differences of the
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Fig. 5. Summary of Experiment-B. Experiments are conducted in SRGs
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parameter β (1000, 3000, 5000). It describes the effects of
introducing sQ in calculating priority of simulated backups
(See Section IV-A.2). We can see here that the performance of
the beginning stage of learning phase is improved. This is be-
cause the number of mis-backups is decreased by considering
deviation information of q value when calculating the priority.
It realizes more precise estimation of values in model-based
reinforcement learning.

4) Results: Experiment-B: Figure 5 summarizes the results.
The horizontal axis means the number of states whose transi-
tions are stochastic. The vertical axis means integral-MSE until
1000 steps that are averaged over 10 experiments. We can find
in them that the performance difference between two methods
widens as the value of the horizontal axis increases. In case of
10, there seems no difference (PSVS takes more computational
costs in exploiting sQ), and it grows up gradually. After
all, the effects of introducing Q is stronger in the static
environment, and adding sQ soften its performance decay
when the environment becomes more stochastic.

V. DIRECTED EXPLORATION WITH VALUE STATISTICS

So far we didn’t care so much about the agent’s action
selection (exploration) strategy. But it is well known that
directed exploration techniques that direct the action selection
behavior to the most interesting parts of the state-action space
can reduce the learning time significantly. Thrun [10] proved
that in some domains, reinforcement learning using directed
exploration could be performed in polynomial time though
in the undirected case it was expected to scale exponentially
with the size of the state-action space grown up [13]. Up
to now, many kinds of these techniques have been proposed
[10], [2], [1], [14], [5] though they are within a single task
learning domain. In this section, we consider them in the
MTRL problem by using value statistics.

A. Exploiting Value Statistics in Directed Exploration

In the MTRL problem, we can utilize value statistics (Q
and sQ) facing a new task. As we explained in Section III-
C, sQ can be viewed as representing reliability of Q used in
initial values. Then, it is natural that exploration should be
directed in such a way that low reliability areas are searched
more compared with others.

Further, there is another significant point here. If explo-
ration is done in the undirected manner, sometimes it would
happen cases where values that have already been estimated
enough accurately are disturbed by unexpected random back-
ups caused by next states’ values that are inaccurate. In the
experiments of previous section, we found that introducing
Q caused temporary declining performance though it was
softened by introducing sQ. One of the sources of this is
thought to be the undirected exploration. Now we can expect
more improved performance by using directed exploration.

In this section, we will present several ways of incorporating
value statistics into conventional exploration techniques, ε-
greedy and softmax action selection. Then we will investi-
gate their effectiveness by comparing them with the previous
results that were obtained by using undirected exploration.

1) ε-greedy method with value statistics: As we explained
in Section IV-B.2, ε-greedy action selection is such a method
that a random action is selected with probability ε, otherwise
it that has the largest value is selected. Now, we can modify
it in two ways:

prob. ε : Select an action whose sQ(s,a) is the largest
1.0 − ε : Select an action whose Q(s, a) is the largest

This method (Type1) omits random exploration. Exploration
is done in order of deviation information. If sQ(s,a) isn’t given
appropriately, it would be in danger of falling deadlock.

prob. ε : Select an action randomly
1.0 − ε : Select an action whose sQ(s,a) is the largest

This method (Type2) intermixes random exploration with
directed one using sQ(s,a). It also can be viewed as an action
selection strategy that is greedy with sQ(s,a).

2) Softmax method with value statistics: Regarding the
action selection of the agent in reinforcement learning, there
has been another widely used method called softmax action
selection [7]. It varies the action probabilities as a graded
function of estimated value. To incorporate value statistics into
this method, now we present a new action probability below:

e sQ(s,a)/T∑
for all a e sQ(s,a)/T

(10)

where T is a positive parameter called the temperature. High
temperatures promote randomness, and low them promote
greediness. This method is somewhat resemble to the Type2
method presented in Section V-A.1. It realizes another way of
directing randomness in action selection. The greedy action
with sQ(s,a) is given the highest selection probability, though
all the others are ranked according to their sQ(s,a) respectively.
It is difficult to judge whether softmax method or ε-greedy
method is superior [7]. The situation is unchanged also in our
case, which will be shown in the next section.

B. Experiments

1) Objective: In this section, we will investigate our meth-
ods presented in Section V-A. Our main interest is to know
how much degree the performance of PSVS (Prioritized
Sweeping with Value Statistics: Section IV) is improved by
introducing DEVS (Directed Exploration with Value Statistics:
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This section’s topic). Therefore, we will compare all results
with those presented in Section IV.

2) Plan: Regarding the experimental environment, we use
the square random gridworld (SRG) that is the same as
experiments in Section IV. In Section V-A, we presented three
methods concerning with DEVS:

• ε-greedy method with value statistics, Type1 (DEVS e1)
• ε-greedy method with value statistics, Type2 (DEVS e2)
• Softmax method with value statistics (DEVS s)

We compare results of them with each other and those by
the simple PSVS that uses the standard ε-greedy method in
its action selection.

3) Results: Figure 6 illustrates a comparison of learn-
ing curves by four methods (PSVS, PSVS+DEVS e1,
PSVS+DEVS e2, PSVS+DEVS s) in SRG whose size is 10.
Figure 7 shows another comparison that is done by experi-
ments under different sizes of SRGs. We can see there that
the result of PSVS e1 is quite instable, and it is inferior to
simple PSVS.

VI. CONCLUSION

Along with recent advances in autonomous agents and
robotics, we aim for scaling up the basic framework of
reinforcement learning towards multitask-oriented. Our moti-
vation arises from consideration that interaction process can be
viewed as tasks, and it is getting to be longer in time scale. We
presuppose such an application in our mind as a cleaning robot
that works everyday at hotels. If we consider each day’s job
as one learning task, then there continue multiple tasks given
to the robot through a year, and it is crucial for the robot to
maintain and exploit past learning experiences to improve its
daily performance.

Based on the motivation, we set two objectives. One was
to formulize the reinforcement learning problem dealing with
multiple learning tasks. The other was to present some con-
crete learning algorithms that work effectively.

For the first objective, we defined the MTRL (Multitask
Reinforcement Learning) problem by introducing an environ-
mental class called BV-MDPs that specified the distribution of
tasks. By using the class, we could set environmental features
that were common to all tasks. For the second objective, we
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Fig. 7. Performance comparison between four methods. The horizontal axis
indicates the size of SRG. The vertical axis plots integral-MSE until 10000
steps that is averaged over 5 overall experiments.

proposed two independent ways incorporating value statistics
into reinforcement learning. One was incorporating them with
Prioritized Sweeping that realized the better performance in
model-based reinforcement learning. The other was with Di-
rected Exploration that realized not only effective searches but
also reduction of unexpected harmful backups. We presented
three specific methods based on ε-greedy and softmax action
selection. All these ways were tested in computer simulation
experiments and we evaluated the effectiveness in detail.
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