
Multitask Reinforcement Learning on the Distribution of MDPs

Fumihide Tanaka
Department of Computational Intelligence and Systems Science,

Tokyo Institute of Technology

Masayuki Yamamura
Department of Computational Intelligence and Systems Science,

Tokyo Institute of Technology

Abstract

In this paper we address a new problem in reinforcement
learning. Here we consider an agent that faces multiple
learning tasks within its lifetime. The agent’s objective
is to maximize its total reward in the lifetime as well
as a conventional return in each task. To realize this,
it has to be endowed an important ability to keep its
past learning experiences and utilize them for improving
future learning performance. This time we try to phrase
this problem formally. The central idea is to introduce
an environmental class, BV-MDPs that is defined with
the distribution of MDPs. As an approach to exploiting
past learning experiences, we focus on statistics (mean
and deviation) about the agent’s value tables. The mean
can be used as initial values of the table when a new task
is presented. The deviation can be viewed as measuring
reliability of the mean, and we utilize it in calculating
priority of simulated backups. We conduct experiments
in computer simulation to evaluate the effectiveness.

1 Introduction

Reinforcement learning (RL) is a general framework of
learning through trial and error. A learner called the
agent interacts with its outside world, the environment,
acquiring rewards. Like the discipline of dogs or cats,
we can let the agent obtain some action strategies grad-
ually through the interaction process. The point is that
there we need not to design a perfect teacher, that is, the
agent can learn autonomously from the environmental
responses. Further, the framework is known to be able
to deal with such difficulties as uncertainty in the en-
vironment and delayed rewards. These features attract
researchers in many fields including robotics.

Basically, the RL framework is designed for solving a
single learning task. The problem is defined only in the
task, and such a concept as reuse of past learning expe-
riences is not considered in it. But there are lots of cases
where multiple tasks are imposed on the agent. Here is
one example: Imagine a cleaning robot in hotels. The
task of the robot is to clean up a room everyday after
the customer checks out. To make the problem simple,
here we assume that only one room is cleaned up in a
day. The structures of all rooms are near the same, but
sometimes there happen cases where customers change
the layouts arbitrarily. Under these settings, the robot
has to finish its task as fast as it can everyday. In this
problem, there are multiple learning tasks through years.
And it is essential for the agent to keep its past expe-
riences and utilize them in the current learning task to

solve it faster. Generally in RL, there costs a large num-
ber of learning trials, and then exploiting them seems
to be promising as it could reduce the number signifi-
cantly. But there has not been so many studies dealing
with multiple tasks in RL, especially when the number
of tasks is in large order (such cases as the cleaning
robot above). In this paper, we try to formulize the
problem on a basic RL framework, and then consider an
appropriate learning method. Here multiple tasks are
defined through the distribution of MDPs (Markov De-
cision Processes), and a learning agent maintains and
exploits value statistics to improve its RL performance.

The structure of this paper is as follows: First, we
briefly review the basic framework of RL (Section 2).
Then, we build our arguments about multitask RL
(MTRL) in Section 3. To design the MTRL agent,
transfer of past learning experiences is at the core of
its ability, and this is discussed in Section 4. Following
this, experiments are conducted in computer simulation
to evaluate proposed methods (Section 5). And finally,
in Section 6 we summarize this paper with discussion
about ongoing studies.

2 Basic Background [2, 7]

In this section we briefly review the basic framework of
RL on which we will build our arguments.

There is a learning agent that interacts with its out-
side (environment) at some discrete time scale. At each
time step, the agent selects an action at ∈ A based on
its observation of the environment’s state st ∈ S . In
response to the at, the environment returns a numeri-
cal reward rt+1 and the next state st+1 to the agent as
a consequence of a state-transition. Basically, the envi-
ronmental dynamics is modeled through a finite Markov
Decision Process (MDP). A particular finite MDP is de-
fined by four sets < S , A, P , R >, where P is a set of
transition probabilities P a

ss′ = Pr {st+1 = s′ | s, a}, and
R is a set of reward functions Ra

ss′ = E {rt+1 | s, a, s′}.
The agent’s objective is to find optimal policy π(s, a),
which is a mapping from states to probabilities of taking
each possible action. It is updated through learning to
maximize the expected discounted future reward from
each state s:

vπ(s)=E
{

rt + γrt+1 + γ2rt+2 · · ·
∣∣ st = s, π

}
(1)

where γ is a discount rate. This vπ(s) specifies the value
of a state s under policy π, and vπ is called the value
function for policy π. Based on this,

v∗(s) = max
π

vπ(s) (2)

Initialize q(s, a) arbitrarily

Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from q
Take action a, observe r, s′
q(s, a)← q(s, a) + α [r + γ maxa′ q(s′, a′)− q(s, a)]
s← s′;

until s is terminal

Figure 1: Q-learning (α: learning rate) [11]

can be defined, and v∗ is called the optimal value func-
tion. By using this, delayed rewards can be dealt with,
and this is one feature of RL.

These value functions can be estimated through trial
and error. That is, the agent can learn them directly
from raw experience without a model of the environ-
mental dynamics. Various approaches were proposed
to estimate them, and we will later use Q-learning[11]
among them. Figure 1 explains its basic algorithm. In
Q-learning, the action-value q(s, a) is used instead of
v(s). This method is known to be able to estimate the
optimal value function under some assumptions, and is
widely used in the literature of RL fields.

3 Formulizing MTRL

Generally speaking, it is natural for an intelligent agent
to face multiple learning tasks within its lifetime. In
contrast to conventional machine learning techniques
that deal with single learning task, recently there have
been some studies for multitask-oriented learning.[8, 10]
Among them, a modular-approach such as Singh’s CQ-
learning[5] is one promising way, reusing past learn-
ing experiences by switching value function modules ob-
tained before. But this approach is inappropriate for our
problem domain where there are relatively many num-
ber of tasks, as huge amounts of memory are needed in
preparing the modules. As another direction, there are
lots of studies in learning maps by a navigation robot,
some of which use RL techniques.[9, 1] If the environ-
ment is static or nearly static, then the maps can be
reused in a new task there. This idea is in a sense near
to our thought, but usually it is difficult for this ap-
proach to discuss how much environmental change it
can deal with. To overcome this, we consider it very im-
portant to phrase the problem formally. In this section
we describe this matter. Based on the arguments here,
we will present a RL method exploiting past learning
experiences in the next section.

3.1 A Task and the Distribution of Tasks
First, we define a task by MDP and its running time
τ , that is, by specifying five sets < S , A, P , R, τ >.
As we explained in Section 2, a set of optimal values
v∗(s) can be calculated if we specify the dynamics of a
MDP. Therefore, we can say that every task has its own
optimal value set v∗(s) respectively.

Next, we consider the distribution of tasks. In other
words, we define a class over MDPs from which we can
sample a task independently. To describe the property
of the class, we use a set of V ∗(s) which denotes the dis-
tribution of v∗(s). Specifying the V ∗(s) can be seen as
setting a relationship between tasks. We can represent

environmental features by using it. And we name the
class as MDPs with Biased-Values (BV-MDPs).

MDP

BV-MDPs

task

Figure 2: A task and the distribution of tasks

In this paper, we assume that every V ∗(s) is inde-
pendent about s. Generally speaking, there seem to be
cases where this condition is invalid, but currently it is
very hard to develop a universal method that doesn’t
need any assumptions.

3.2 The Total Reward Through a Lifetime
As we mentioned in Section 2, the purpose of an agent
in RL is to maximize the expected return in every state.
In addition to this, here we have to consider the total
reward through the agent’s lifetime. Formally it is de-
scribed as follows:

TR=

N∑
i=1

∫ ti−1+τi

ti−1

rt dt

(
ti =

i∑
j=1

τj , t0 =0

)
(3)

where N is the total number of tasks, and τi is running
time of task i. These two criterions (1)(3) imply a sig-
nificant problem about their time scales. The former
assumes infinite time though the latter finite. It sug-
gests the need for RL in finite time. Although this is a
big theme, in this paper we assume that the time scale
of the former (1) is enough small compared with τi.

3.3 The MTRL Problem
Based on the arguments so far, now we can formulize the
MTRL problem. We consider an agent that faces multi-
ple learning tasks through its lifetime, utilizing past ex-
periences for improving its current learning performance
(Figure 3). The agent’s objective is to maximize its total
reward (3) in addition to the conventional criterion (1)
in each task. A task is defined as an independent sample
from BV-MDPs, and each is presented to the agent one
by one continuously until the end of its lifetime.

lifetime

BV-MDPs

past tasks current task
(one is choosen)

Figure 3: The MTRL agent

4 Designing the MTRL Agent

The ability to transfer past learning experiences and uti-
lize them for improving future learning performance is
at the core of the MTRL problem. In this section we
discuss how it should be realized.

As we mentioned in the previous section, one objec-
tive of the agent in MTRL was to maximize its total
reward (3). Currently we cannot calculate the equation
directly. Then instead of it, we aim for maximizing the
sub-total reward below in every task.

STR =

∫ ti−1+τi

ti−1

rt dt

(
ti =

i∑
j=1

τj , t0 =0

)
(4)

This is valid because every task is sampled indepen-
dently.

Next we explain what kind of information the agent
maintains as past learning experiences, and then we de-
scribe how it is exploited in RL of current task.

4.1 Maintaining Value Statistics
What should be transferred between tasks as past expe-
riences? The most straightforward way would be keep-
ing the learning results, that is, value tables. In the
MTRL problem, there are relationships between tasks
that are defined by BV-MDPs. Therefore, there are re-
lationships also in their value tables. We try to extract
them from value statistics. After finishing each task,
the agent can easily store the learning results. It calcu-
lates the statistical information such as the mean and
deviation that are noted as follows:

Q(s, a) =
1

n

n∑
i=1

q(s, a)i (5)

sQ(s,a) =

√√√√ 1

n − 1

n∑
i=1

(q(s, a)i − Q(s, a))2 (6)

(for all s, a) where i indicates a task index, and n is
the number of previously solved tasks. These quantities
represent features in the environment that are common
to all of the tasks. If there is a state-action pair whose
sQ(s,a) is relatively small compared with others, then its

Q(s, a) can be viewed as more reliable than others.

4.2 Exploiting Value Statistics
To maximize (4), the agent has to estimate the optimal
value function as fast as possible. In the situation where
the learning speed is crucial, usually a model-based ap-
proach (Figure 4) is used in RL.[6, 7] Here, in addition
to the normal learning process (by real experiences), a
model and simulated experiences in it are used to es-
timate its values, and then its learning speed is accel-
erated. The basic procedure of model-based Q-learning
is shown in Figure 5. The model is maintained here
simply by keeping counts of the number of times each
state-action pair has been experienced and of what the
next states were.

Below we will discuss how previously obtained value
statistics are combined with the model-based RL.

real
experience

simulated
experience

Model
Environment

model
learning

search
control

Policy/value functions

direct RL
update

planning
update

Figure 4: The general Dyna architecture [6]

Initialize q(s, a) and Model(s, a) for all s, a
Do forever:

simple Q-learning
Model(s, a)← s′, r
Repeat X times:

s←random previously observed state

a←random action previously taken in s
s′, r ←Model(s, a)
q(s, a)←q(s, a) + α [r + γ maxa′ q(s′, a′)− q(s, a)]

Figure 5: Dyna-Q algorithm [6]

Exploiting Q

Usually in RL, initial values are set randomly or zero,
and there is no specific standard that is considered to
be the best though they affect the learning-speed very
much. In the MTRL problem, however, the mean value
Q(s, a) can be employed easily, and this is the best choice
for them.

q0(s, a) = Q(s, a), for all s, a (7)

Exploiting sQ

To make model-based RL effective, there are two keys
in its way of simulated backups. As the number of them
is fixed at X times per one real trial, it is important to
let one simulated backup as large as and as precise as
the agent can.

For the former theme, that is about the size of each
backup, Prioritized Sweeping (PS) was proposed.[3, 4]
In the basic algorithm shown in Figure 5, simulated ex-
periences are obtained by random backups. But here
in the PS, the order is determined by using a priority p
below, and backups are done more effectively.

p =
∣∣ qT − qC

∣∣ (8)

where qC = q(s, a) and qT is various by the difference of
the RL algorithm. For example, in case of Q-learning,
qT = r + γ maxa′ q(s′, a′), or in case of SARSA[7], qT =
r + γq(s′, a′). And then, backups having larger p values
are prioritized.

Now, we consider the latter theme, which is about
accuracy of each backup. As we mentioned, each Q(s, a)
has its own reliability represented by sQ(s,a) in a sense.

We make use of this feature. Many RL algorithms such
as Q-learning are what we call bootstrapping method;
each value is estimated by using other values which
themselves are also estimates. Therefore, in the middle
of learning phase, the values are not always accurate,
that is, there often happen cases where they are far from
optimal values. Now we can use the deviation informa-
tion sQ to decrease the number of wrong backups caused
by the inaccurate values explained above. This idea is
realized by introducing a new priority metric designed
for the MTRL problem:

pE = E
[(

QT − QC
)2]

�
(

QT − QC
)2

+
(

sQT

)2
+
(

sQC

)2 (9)

(See Appendix) By using this pE , the deviation informa-
tion about each q(s, a) is properly exploited, and more
precise estimation can be realized. Through the learn-
ing of a task, a queue is maintained of every state-action
pair whose q(s, a) would change nontrivially if backed
up, prioritized by the size of the change. When the top
pair in the queue is backed up, the effect on each of its
predecessor pairs is computed. If the effect is greater
than some small threshold, then the pair is inserted in
the queue with the new priority. This queue mainte-
nance is the same as the original PS.

Value statistics are updated at the end of each task’s
learning phase. In contrast to the mean information
Q which is used only when each task’s learning starts,
the deviation sQ has been hired through the task all the
way. Statistics are universal information in that they are
obtained through many past learning tasks. Therefore,
if one wants to focus on the performance of convergence
within a task, the information should be shifted to more
local type from the universal one. To do this, we prepare
another deviation s′Q that represents fluctuation of q
within a task, and is updated in every step of learning.
(s′Q is set to 0.0 at the beginning of each task’s learning)
Then, the weighted sum of sQ and s′Q is used, changing
the weights as shown in Figure 6. By using the sum, the
deviation is shifted gradually to that of the local one.
Currently a slope parameter β is determined by trial
and error.

1.0

0.0
trials

universal

task-specific

rate

Figure 6: Adaptation of each deviation

5 Experiments

5.1 Objective
In this section we set the MTRL problem by using com-
puter simulation. We conduct some experiments on it
and evaluate the effectiveness of our method presented
in Section 4. There are two points for a clear under-
standing about the results:

S

G

Ag

Figure 7: A simple maze problem

• We let the agent’s lifetime enough long for acquir-
ing accurate statistics. Then, in new tasks, we
compare results by our method that exploits value
statistics and those by normal PS.

• The purpose of RL agent is to maximize some cri-
terions about reward. But, when we evaluate its
performance, such a standard like an average re-
ward is sometimes inappropriate because it is af-
fected by the differences of the agent’s policy (ac-
tion selection). Therefore we evaluate our method
by measuring accuracy of value estimation. We
calculate the mean-squared error (MSE) between
estimated values and the optimal values to judge
the accuracy. This criterion enables us to do fair
and stable evaluations. As we explained in Section
2, the value of a state is a metric which generalizes
acquiring rewards, and estimating it faster leads
to more rewards in τ period.

5.2 Plan
At base, the problem is designed on Sutton’s simple
maze.[6] Figure 7 illustrates it. The 46 cells of the grid
correspond to the states. At each cell, four actions are
possible: north, south, east, and west, which stochasti-
cally (originally deterministic) cause the agent to move
one cell in the corresponding direction on the grid. The
transition-probabilities are determined when a task (a
maze) is given to the agent, which will be explained
later. The agent cannot move toward outside and obsta-
cles. Reward is zero on all transitions, except those into
the goal state, on which it is +100. After reaching the
goal state, the agent returns to the start state to begin a
new episode. This problem can be represented by MDP,
and there the agent aims for acquiring the minimum-
length route towards the goal through trial and error.
In our experiments, γ is set to 0.95 and α to 0.1 which
are the same as [6, 4].

Consider a situation where multiple maze problems
(MDPs) are given to the agent one by one. When a
new task (MDP) is given, each transition-probability is
sampled from a normal distribution. Here we form BV-
MDPs by < S , A, DP, R > where DP indicates the set
of the distribution.

0.5 Pss'
a

p
ro

b
a

b
il

it
y

0.02
1/2

Figure 8: A probability distribution of P a
ss′

At first, 100 tasks are sampled to calculate value
statistics. Then, 10 new are sampled as well to in-
vestigate the effects of proposed methods. Results are
evaluated by the averaged mean-squared error (aver-
aged MSE) between q(s, a) and q∗(s, a). Regarding the
agent’s action selection (exploring strategy), we use ε-
greedy selection where a random action is selected with
probability ε, and in other cases an action whose value
is the highest is selected.[7] In our experiments, ε is set
to 0.5.

Two types of experiments are conducted. In Exp.1
we fix the number of states whose transition is stochastic
to 25. They are determined randomly. (Experiments are
done 10 times as a whole, and we evaluate the averaged
results) Each transition probability represents that of
success in corresponding state-transition, and in other
case (: failure) the state is unchanged. Regarding the
states whose transition is stochastic, all transition prob-
abilities are sampled from a normal distribution whose
mean is 0.5 and variance 0.02. In Exp.1 we focus on in-
vestigating effects of introducing Q and sQ respectively.

Next in Exp.2, we change the number of states whose
transition is stochastic. In addition to the case of 25
above, here we add those of 5 and 45. All other set-
tings are the same as Exp.1. To reduce the number
means that the environment becomes more static, and
vice versa. In the former case, it is expected that the
effects of introducing Q would be dominant. In Exp.2,
we pay attention to how the situation changes as the
environment becomes more stochastic.

5.3 Results: Exp.1

Figure 9 shows the effect of introducing Q. It is compar-
ison between a learning curve by a normal PS method
and that by a PS with Q in its initial values. We can
find here a typical result about using Q as initial bias. In
case of using it, the performance is getting worse tem-
porary at the beginning stage, and then it is getting
better. If this experiment is continued longer, the per-
formance is converged below the start point. There is an
offset between two lines, and because of this, the biased
method converges faster. This tendency was observed
in all experiments conducted in this paper.

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
ed

-M
S

E
 (

lo
gs

ca
le

)

trials (*50)

PS_NoBias_env25

PS_WithBias_env25

Figure 9: Learning curves for simple PS (PS NoBias)

and it with the initial bias Q (PS WithBias).

Next, Figure 10 shows the effect of introducing sQ.
As a reference, there plotted the result of biased PS
shown in Figure 9. Then we compare three results with
it which are by proposed method using both Q and sQ.
(β is different in three ways, 10000, 20000, 30000; each

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
ed

-M
S

E
 (

lo
gs

ca
le

)

trials (*1000)

PSb_env25
BPSb_BR10000_env25
BPSb_BR20000_env25
BPSb_BR30000_env25

Figure 10: Learning curves for PS with Q only (thick

line) and with Q and sQ (dotted lines).

from the left of the dotted lines in Figure 10) They are
all better than the reference, especially in the beginning
phase. This is because by introducing sQ the learning
process is done in such a way that dispersion of reliabil-
ity in Q is considered.

5.4 Results: Exp.2
Figure 11 summarizes the results of Exp.2. Experiments
were conducted in three environmental settings. The
number of states whose transitions are stochastic is dif-
ferent in three ways: 5, 25, 45. The horizontal axis
means them. The vertical axis plots integral values of
averaged MSE until 100000 steps. (: The smaller value
means the better performance.) Three lines indicates
the results by the normal PS which doesn’t use any past
learning information (PS), the biased PS which exploits

only Q (PS WithBias), and the proposed method which

exploits both Q and sQ (PSVS). We can see that as the

environment is getting more stochastic, the effect of Q is
weakened. In contrast to this, the effect of sQ seems to
be getting better as the slope of the line of PSVS is more
gentle compared with that of PS WithBias. As a con-
sequence, we can view that the role of sQ complements

that of Q.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

5 25 45

PS

in
te

gr
al

-M
S

E

Type Of Environment

PS_WithBias

PSVS

Figure 11: Performance comparison between three
methods in three types of environments.

6 Conclusion

In this paper, we tried to expand the framework of RL
into dealing with multiple learning tasks. We formulized

the MTRL problem on the distribution of MDPs, and
presented a model-based learning method exploiting
value statistics. By using it, the agent could extract
relationships between tasks (which were defined with
an environmental class, BV-MDPs), and utilize them
to improve its RL performance. Experiments in com-
puter simulation showed its effectiveness and properties
of proposed methods.

Ongoing research topics are mainly in two directions.
First, we’re considering value statistics where each value
is represented not by naive tables but some function
approximators especially those in linear forms. Second,
as we described in 3.2, we need to develop a metric that
can measure or evaluate the performance of RL in finite
time scales. We’re trying to estimate the number of
learning trials by the function of sQ.

References

[1] J. del R. Mill’an. Rapid, Safe, and Incremental
Learning of Navigation Strategies. IEEE Transac-
tions on Systems, Man and Cybernetics - Part B,
26:408–420, 1996.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement Learning: A Survey. Journal of Ar-
tificial Intelligence Research, 4:237–285, 1996.

[3] A. W. Moore and C. G. Atkeson. Prioritized Sweep-
ing: Reinforcement Learning with Less Data and
Less Real Time. Machine Learning, 13:103–130,
1993.

[4] J. Peng and R. J. Williams. Efficient Learning and
Planning Within the Dyna Framework. Adaptive
Behavior, 1(4):437–454, 1993.

[5] S. P. Singh. Transfer of Learning by Composing
Solutions of Elemental Sequential Tasks. Machine
Learning, 8:323–339, 1992.

[6] R. S. Sutton. Integrated Architectures for Learn-
ing, Planning, and Reacting Based on Approximat-
ing Dynamic Programming. In Proceedings of the
7th International Conference on Machine Learning,
pages 216–224, 1990.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

[8] F. Tanaka and M. Yamamura. An Approach to
Lifelong Reinforcement Learning through Multiple
Environments. In Proceedings of the 6th European
Workshop on Learning Robots, pages 93–99, 1997.

[9] S. Thrun and K. Möller. Active Exploration in Dy-
namic Environments. In Advances in Neural Infor-
mation Processing Systems 4, pages 531–538, 1992.

[10] S. Thrun and L. Pratt. LEARNING TO LEARN.
Kluwer Academic Publishers, 1998.

[11] C. J. C. H. Watkins and P. Dayan. Q-Learning.
Machine Learning, 8:279–292, 1992.

Appendix

pE = E
[(

QT − QC
)2]

= E
[(

QT
)2]− 2 · E

[
QT QC

]
+ E

[(
QC
)2]

�
(

sQT

)2
+ QT

2− 2 · QT QC +
(

sQC

)2
+ QC

2

=
(

QT − QC
)2

+
(

sQT

)2
+
(

sQC

)2

	header: Copyright [2003] IEEE. Reprinted from the Proceedings ofThe 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation

